Propofol inhibits ketamine-induced c-fos expression in the rat posterior cingulate cortex.

نویسندگان

  • A Nagata
  • S Nakao
  • E Miyamoto
  • T Inada
  • I Tooyama
  • H Kimura
  • K Shingu
چکیده

UNLABELLED Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, has psychotomimetic activity. NMDA receptor antagonists cause morphological damage in the posterior cingulate cortex, which may be the brain region responsible for their psychotomimetic effects. Benzodiazepines are effective in preventing these effects through gamma-aminobutyric acid A (GABA(A)) receptor activation. We investigated the effect of propofol, which has both GABAA receptor-activating and NMDA receptor-suppressing activity, on ketamine-induced c-fos expression in the rat posterior cingulate cortex. Propofol or vehicle was continuously infused IV. Fifteen minutes later, 100 mg/kg ketamine or isotonic sodium chloride solution was injected intraperitoneally. Two hours later, brain sections were prepared, and c-fos expression was detected using immunohistochemical methods. Propofol significantly inhibited ketamine-induced c-fos expression in the posterior cingulate cortex. Propofol itself did not induce c-fos expression in this brain region. We conclude that propofol may be able to inhibit ketamine-induced psychotomimetic activity and neuronal damage. IMPLICATIONS In the present study, we demonstrated that the clinically relevant dose of propofol significantly inhibited ketamine-induced c-fos expression in the rat posterior cingulate cortex. This finding implies that propofol may inhibit ketamine-induced psychotomimetic activity and neuronal damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Intrathecal Amylin and Salmon Calcitonin Affect Formalin Induced c-Fos Expression in the Spinal Cord of Rats

Background: Amylin and Salmon Calcitonin belong to the calcitonin family of peptides and have high affinity binding sites in the rat spinal cord. The aim of this study was to characterize receptors for Amylin and Salmon Calcitonin functionally in the spinal cord of rats. We assessed the expression of c-Fos in response to intraplantar formalin in the lumbar regions of the spinal cord in consciou...

متن کامل

Developmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations

Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...

متن کامل

Developmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations

Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Anesthesia and analgesia

دوره 87 6  شماره 

صفحات  -

تاریخ انتشار 1998